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Module 1 :  

The equation of “continuity” 

 

Lecture 1:  

Equation of Continuity 
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Advanced Heat and Mass Transfer: Modules 

1. THE EQUATION OF “CONTINUITY”: Lectures 1-6 

(i) Overall Mass Balance 

(ii) Momentum Balance 

(iii) Energy Balance 

(iv) Special Mass Balance 

(v) Equation for the fluxes 

2. “DIFFUSIVE” HEAT AND MASS TRANSFER: Lectures 7-20 

(i) Steady and Unsteady/One and Multiple Dimensions 

(ii) Mass Transfer with Chemical Reaction 

(iii) Perturbation Techniques 

(iv) Moving Boundary Problems 

(v) Simultaneous Heat and Mass Transfer 

3. “CONVECTIVE” HEAT AND MASS TRANSFER: Lectures 21-32 

(i) Flow Inside Ducts 

(ii) Dispersion 

(iii) Laminar Boundary Layers 

(iv) Mass Transfer with Chemical Reactions 



 
 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering 
 

3 

(v) Asymptotic Methods 

(vi) Simultaneous Momentum, Heat and Mass Transfer 

(vii) Natural Convection 

4. MULTICOMPONENT TRANSPORT: Lectures 33-37 

(i) Binary Systems 

(ii) Muti-component Flux Equations 

(iii) Thermal Diffusion 

(iv) Dimensional Analysis 

5. MASS TRANSFER IN TURBULANT FLOWS: Lectures 38-41 

(i) Time Averaging and Eddy Viscosity 

(ii) Universal Velocity 

(iii) Mass Transfer in Turbulent Pipe Flow  

 

Reference Books 

1. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., “Transport Phenomenon”, Wiley (1960). 

2. Carslaw, H.S. and Jaeger, J.C., “Conduction of heat in Solids”, (2nd ed) Oxford (1975). 

3. Slattery, J., Momentum, Energy and Mass Transfer in Continua”, (2nd ed) Krueger 

(1981). 

 

Transport Processes 
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Goals of the Course 

• To relate mathematical symbols to physical reality 

• To review several classic problems 

• To show examples of how to approach the unknown 

 

THE EQUATION OF “CONTINUITY” 

The Continuum Approximation 

Field variables (e.g. velocity) at a “point” are spatial averages over a small volume V around that 

point, where V has to be such that 

 

ℓ << V1/3<< D,                               (1.1a) 

where, ℓ is a characteristic microscopic length scale, which can be of molecular dimensions or 

the distance between molecules in a gas or the particle size in a solid/fluid two-phase system, and 

D is a characteristic macroscopic length scale. For example, for flow in a pipe, D can be the pipe 

diameter. 

                   The continuum approximation considers the fluids to be continuous. Thus, the fluid 

properties such as temperature, pressure, density and velocity of the fluid are taken to be well 

defined at infinitely small points (i.e. at microscopic level), defining a reference element of 

volume, let’s call this volume REV, at the geometric order of the distance between the two 

adjacent molecules of fluid. Properties are assumed to vary continuously from one point to 

another, and are averaged over the volume REV.  The fact that the fluid is made up of discrete 

molecules is ignored.        
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Eulerian and Lagrangian coordinates  

Eulerian Coordinate: in this system the independent variables are x, y, z and t or xi (i=1, 2, 3) and 

t. This is a fixed coordinate system. The basic conservation equation are in the Eulerian frame, R 

= R (xi, t).  

                  In the Lagrangian frame, attention is fixed on a particular mass of fluid as it flows, R 

= R (xi
o, t), where the coordinate xi

o specifies which fluid element is being considered. 

Material Derivative 

Consider a variable α such that  

( )t,xαα i=               (1.1b) 

Then the total differential of α can be expressed as  
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i
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x
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∂
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Division by a time differential δt leads to the following expression: 
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After taking the limit δt→0, we obtain for the material derivative 
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ν is the fluid velocity in direction i, 

Dt
Dα  is called the Material Derivative or Lagrangian Derivative in time and 

t
α
∂
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is the Eulerian 

Derivative in time. 
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         The Material derivative or Lagrangian time derivative represents in total change in α as 

seen by an observer who is moving with a particular fluid element. In the Lagrangian frame, we 

observe the particle for a time δt as it flows. The position of a particle changes by δxi while α 

changes as δα. 

 

Time derivatives 

The time derivative is a derivative of a function with respect to time. It implies the rate of change 

of value of a function with respect to time t. 

Partial time derivative   
t
c
∂
∂

  (at a point) 

Total time derivative  

By dividing by dt , the total differential can be written as total time derivative                      

dt
dc

z
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This expression represents the change in the time of the function c i.e., (∂c/∂t) as we move about 

with arbitrary velocities in the coordinate directions i.e., (dx/dt, dy/dt and dz/dt). 

Substantial Derivative or Material Derivative 

If we constrain the motion to follow the motion of the individual fluid particles, we obtain the 

Substantial Derivative or Material Derivative (also known as Convective Derivative) given by 

z
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(1.1g) 
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where Ux, Uy     and Uz  are the components of the local fluid velocity U in x, y and z directions, 

respectively. 

 

The Mass Continuity Equation 

The continuity equation is an overall mass balance about a control volume. Consider a volume 

element of volume V fixed in space as shown in figure below. Here the volume V is bounded by 

a surface S  with outward unit normal vector n  

 

Fig. 1.1 Control Volume for Mass Continuity equation 

( ) ( )S surface through mass ofinflux Net  TheV inside mass ofon Accumulati =  

dSdV U  nρ
t
ρ

v s
∫ ∫ •−=
∂
∂         (1.2) 

Here, ρ is the mass density. The minus sign (-) in front of the integral is because of the choice of 

n pointing outwards.  

        The Divergence Theorem (Gauss) for a vector field A gives  



 
 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering 
 

8 

 

Fig.1.2. Gauss Divergence theorem 

( ) ( )dSdV
SV
∫∫ •=•∇ nAA         (1.3a) 

Where ∇  is gradient (a vector) and can be expressed as 

z
k

y
j

x
i

∂
∂

+
∂
∂

+
∂
∂

=∇          (1.3b) 

In equation (1.3a), the left hand side is the volume integral over the volume V, the right hand 

side is the surface integral over the boundary of the volume V. The closed manifold dV is quite 

generally the boundary of V oriented by outward-pointing normals and n is the outward pointing 

unit normal field of the boundary dV.   

For UρA = , equation (1.2) becomes 

( ) ( )dSdV UU ∫∫ •−=•∇−
SV

nρρ        (1.3c) 

Substitute equation (1.3c) on the right hand side of equation (1.2) we get, 

( )dVdV U  ρ
t
ρ

VV
∫∫ •∇−=

∂
∂                      (1.3d) 

or 



 
 

NPTEL , IIT Kharagpur, Prof. Saikat Chakraborty, Department of Chemical Engineering 
 

9 

( ) 0 ρ
t
ρ

V

=⎥⎦
⎤

⎢⎣
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∂
∂

∫ dVU          (1.3e) 

Equation (1.3e) is known as Mass Continuity equation. 

Since this equation must hold for arbitrary V, Mass Continuity Equation becomes 

( ) 0ρ
t
ρ

=•∇+
∂
∂

U          (1.4a) 

or  

 ( ) 0ρρ
=•∇+ U

Dt
D          (1.4b) 

From equation (1.1g), we know that 

( )ρ
t
ρ

∇•+
∂
∂

= U
Dt
Dρ           (1.4c) 

Incompressible fluids: Incompressible fluids are those fluids that do not exhibit any variation in 

density either in space or time. Therefore for incompressible fluids 0ρ =∇ and 0
t
ρ
=

∂
∂ . 

 If ρ is constant (for incompressible fluids) in space and time, then the equation of continuity for 

incompressible fluids becomes  

U•∇ =0          (1.4d) 

Equation (1.4b) can also be written as: 

( )U
Dt
DV

V
•∇=

1
         (1.4e)

 

where, 
ρ
1V =   and 

Dt
DV

V
1  is the rate of dilation of the fluid. 
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Application: We can apply the principle of continuity to pipes with cross sections which 

changes along their length. See Fig 1.3 below. 

 

Fig.1.3. fluid flowing through convergent-divergent section of the pipe 

A liquid is flowing from left to right and the pipe is narrowing in the same direction. By the 

continuity principle, the mass flow rate must be the same at each section.   

 


